Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.450
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669872

RESUMEN

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Asunto(s)
Disruptores Endocrinos , Estrógenos , Fenoles , Receptores Androgénicos , Hormonas Tiroideas , Vitelogeninas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Fenoles/toxicidad , Masculino , Contaminantes Químicos del Agua/toxicidad , Femenino , Vitelogeninas/metabolismo , Disruptores Endocrinos/toxicidad , Hormonas Tiroideas/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Estrógenos/toxicidad , Estradiol/toxicidad , Antagonistas de Andrógenos/toxicidad , Testosterona/metabolismo , Testosterona/análogos & derivados , Hidrocortisona
2.
Gen Comp Endocrinol ; 352: 114491, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494038

RESUMEN

Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.


Asunto(s)
Channa punctatus , Vitelogeninas , Animales , Femenino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas del Huevo/genética , Perfilación de la Expresión Génica , Agua Dulce
3.
Gen Comp Endocrinol ; 351: 114479, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431208

RESUMEN

Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.


Asunto(s)
Perciformes , Vitelogeninas , Animales , Vitelogeninas/metabolismo , Pez Cebra/metabolismo , Peces/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Perciformes/metabolismo
4.
J Insect Sci ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412292

RESUMEN

In this study, a vitellogenin like1 gene (SfVg-like1) in Sogatella furcifera was identified. The open reading frame (ORF) encoded 1,321 amino acid sequence. Structure analysis reveals that the amino acid sequence of SfVg-like1 has 3 conserved LPD_N, DUF1943 and VWFD domains. Phylogenetic analyses showed that SfVg-like1 was clustered in the same branch with the Vg-like1 of Nilaparvata lugens (100% bootstrap value) compared with other Hemiptera insects Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that SfVg-like1 expressed during all stages, and in both genders. The relative expression levels of SfVg-like1 mRNA were higher in adults than in nymph developmental stages. The knockdown of SfVg-like1 gene resulted in the inhibition of the ovarian development in female adults, whereas the morphology of the testis in male adults was not been affected. The silence of SfVg-like1 could decrease the relative expression levels of target of rapamycin (SfTOR, GenBank MW193765) and vitellogenin (SfVg, GenBank MH271114) genes significantly in female adults. However, the knockdown of SfTOR or SfVg genes in female adults did not affect the transcript level of SfVg-like1. Therefore, it demonstrated that SfVg-like1 might locate on the upstream signaling pathways of SfTOR and SfVg. These results demonstrate that SfVg-like1 is essential for S. furcifera reproduction, and it could be the potential target for the control of this pest.


Asunto(s)
Hemípteros , Vitelogeninas , Femenino , Masculino , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Filogenia , Secuencia de Aminoácidos , Reproducción
5.
Chemosphere ; 352: 141423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340991

RESUMEN

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Asunto(s)
Disruptores Endocrinos , Fungicidas Industriales , Nitrilos , Contaminantes Químicos del Agua , Animales , Masculino , Pez Cebra/metabolismo , Disruptores Endocrinos/metabolismo , Eje Hipotálamico-Pituitario-Gonadal , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/metabolismo , Vitelogeninas/metabolismo , Semen , Gónadas , Espermatozoides/metabolismo , Reproducción , Contaminantes Químicos del Agua/metabolismo
6.
Mar Biotechnol (NY) ; 26(2): 243-260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294574

RESUMEN

The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.


Asunto(s)
Copépodos , MicroARNs , Vitelogeninas , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Copépodos/genética , Copépodos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Masculino , Regulación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica
7.
Sci Rep ; 14(1): 1820, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245605

RESUMEN

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Asunto(s)
Biomphalaria , Esquistosomiasis , Animales , Biomphalaria/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Multiómica , Filogenia , Proteómica , Proteínas del Huevo/metabolismo , Ferritinas/genética , Schistosoma mansoni/metabolismo
8.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285728

RESUMEN

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Asunto(s)
Aedes , Anopheles , Malaria , Femenino , Animales , Anopheles/genética , Mosquitos Vectores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas del Huevo/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fertilidad/genética , Lípidos , Aedes/genética , Aedes/metabolismo
9.
Insect Mol Biol ; 33(1): 17-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37707297

RESUMEN

In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.


Asunto(s)
Testículo , Vitelogeninas , Femenino , Masculino , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Insectos/genética , Reproducción , Gametogénesis
10.
Insect Sci ; 31(2): 371-386, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37933419

RESUMEN

Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.


Asunto(s)
Hormigas , MicroARNs , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Hormigas de Fuego , Hormonas Juveniles/metabolismo , Hormigas/fisiología , Reproducción , MicroARNs/genética , MicroARNs/metabolismo
11.
Chemosphere ; 346: 140662, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949182

RESUMEN

Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Femenino , Masculino , Pez Cebra/metabolismo , Percloratos/toxicidad , Percloratos/metabolismo , Glándula Tiroides/metabolismo , Salud Reproductiva , Ecosistema , Gónadas , Hormonas Esteroides Gonadales/metabolismo , Reproducción , Esteroides/metabolismo , ARN Mensajero/metabolismo , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/metabolismo
12.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060601

RESUMEN

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Asunto(s)
Bombyx , Nosema , Animales , Humanos , Vitelogeninas/metabolismo , Esporas Fúngicas/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
13.
Bull Environ Contam Toxicol ; 112(1): 11, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092994

RESUMEN

The present study evaluates the endocrine effect in flatfish through vitellogenin (vtg) gene expression and its association with pollutants data obtained from fish muscle and sediment from two regions in the Gulf of Mexico (GoM): Perdido Fold Belt (northwestern) and the Yucatan Peninsula (southeast). The results revealed induction of vtg in male flatfish in both geographical regions with different levels and patterns of distribution per oceanographic campaign (OC). In the Perdido Fold Belt, vtg was observed in male fish during four OC (carried out in 2016 and 2017), positively associated with Pb, V, Cd and bile metabolites (hydroxynaphthalene and hydroxyphenanthrene). In the Yucatan Peninsula, the induction of vtg in males was also detected in three OC (carried out in 2016 and 2018) mainly associated with Ni, Pb, Al, Cd, V and polycyclic aromatic hydrocarbons. Ultimately, estrogenic alterations could affect reproductive capacity of male flatfish in the GoM.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Peces Planos , Contaminantes Químicos del Agua , Animales , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Golfo de México , Cadmio , Plomo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Monitoreo del Ambiente/métodos
14.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138959

RESUMEN

The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.


Asunto(s)
Hormigas , Vitelogeninas , Animales , Femenino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Hormigas de Fuego , Reproducción/genética , Fertilidad/genética , Hormigas/genética
15.
Mar Biotechnol (NY) ; 25(6): 1176-1190, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010485

RESUMEN

Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.


Asunto(s)
Ovario , Penaeidae , Animales , Femenino , Vitelogeninas/genética , Vitelogeninas/metabolismo , ARN Interferente Pequeño/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Vitelogénesis/genética
16.
J Insect Physiol ; 151: 104586, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37989476

RESUMEN

Effects of dietary protein quality on insect development (not just growth) are unclear. Dietary amino acid blends matching yolk proteins support reproduction and juvenile development in Drosophila melanogaster. We matched amino acids to vitellogenin and tested development of juvenile male lubber grasshoppers, which do not produce vitellogenin. Last instars were fed classic dry diets with amino acids substituted for proteins. Matching amino acids to vitellogenin allowed molting to adulthood, while an unmatched isonitrogenous diet did not. Health on dry diets was poor, so we developed wet diets with agar, horse feed, and amino acids. Juveniles fed these diets matched to vitellogenin developed comparably to juveniles fed lettuce. However, wet diets with amino acids dissimilar to vitellogenin (low-quality) slowed development but maintained size at adulthood. We observed no compensatory feeding on low-quality diets. Theory suggests accumulation of proteins permits development. To detect a threshold, we started last juvenile instars on high-quality diets, then abruptly switched them to low-qualities diets. When switched to the poor-quality diet at 6d, grasshoppers molted at a similar age (∼17d) to grasshoppers continuously on the high-quality diet. Total hemolymph proteins levels were unaffected by the timing of diet switches. Last, methionine is essential but can be noxious at high levels. Diets with low-quality protein except for methionine slowed growth early but did not alter the time or size at molt. Overall, the feeding threshold is solely due to essential amino acids, and low-quality protein diets slowed development but did not affect adult size.


Asunto(s)
Saltamontes , Vitelogeninas , Masculino , Animales , Caballos , Vitelogeninas/metabolismo , Drosophila melanogaster/metabolismo , Saltamontes/metabolismo , Aminoácidos/metabolismo , Metionina/metabolismo , Dieta , Desarrollo Embrionario , Alimentación Animal , Proteínas en la Dieta/metabolismo
17.
Sci Rep ; 13(1): 18795, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914813

RESUMEN

The specific functions and essentiality of type II vitellogenin (Vtg2) in early zebrafish development were investigated in this study. A vtg2-mutant zebrafish line was produced and effects of genomic disturbance were observed in F2 females and F3 offspring. No change in vtg2 transcript has been detected, however, Vtg2 abundance in F2 female liver was 5×, and in 1 hpf F3 vtg2-mutant embryos was 3.8× less than Wt (p < 0.05). Fecundity was unaffected while fertilization rate was more than halved in F2 vtg2-mutant females (p < 0.05). Hatching rate was significantly higher in F3 vtg2-mutant embryos in comparison to Wt embryos. Survival rate declined drastically to 29% and 18% at 24 hpf and 20 dpf, respectively, in F3 vtg2-mutant embryos. The introduced mutation caused vitelline membrane deficiencies, significant mortalities at early embryonic stages, and morphological abnormalities in the surviving F3 vtg2-mutant larvae. Overrepresentation of histones, zona pellucida proteins, lectins, and protein degradation related proteins in F3 vtg2-mutant embryos provide evidence to impaired mechanisms involved in vitellin membrane formation. Overall findings imply a potential function of Vtg2 in acquisition of vitellin membrane integrity, among other reproductive functions, and therefore, its essentiality in early zebrafish embryo development.


Asunto(s)
Vitelogeninas , Pez Cebra , Animales , Femenino , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Genómica , Larva/metabolismo , Vitelinas/metabolismo , Vitelinas/farmacología , Vitelogeninas/genética , Vitelogeninas/metabolismo , Pez Cebra/metabolismo
18.
Ecotoxicol Environ Saf ; 266: 115563, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827093

RESUMEN

Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Peces/metabolismo , Estrógenos/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/metabolismo , Contaminantes Químicos del Agua/análisis , Mamíferos/metabolismo
19.
Regul Toxicol Pharmacol ; 145: 105501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820895

RESUMEN

Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.


Asunto(s)
Vitelogeninas , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Laboratorios , Peces/metabolismo , Estrógenos/metabolismo , Sistema Endocrino , Contaminantes Químicos del Agua/análisis
20.
Environ Toxicol Chem ; 42(12): 2747-2757, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37712519

RESUMEN

The US Environmental Protection Agency (USEPA) is faced with long lists of chemicals that require hazard assessment. The present study is part of a larger effort to develop in vitro assays and quantitative structure-activity relationships applicable to untested chemicals on USEPA inventories through study of estrogen receptor (ER) binding and estrogen-mediated gene expression in fish. The present effort investigates metabolic activation of chemicals resulting in increased estrogenicity. Phenolphthalin (PLIN) was shown not to bind rainbow trout (Oncorhynchus mykiss) ER (rtER) in a competitive binding assay, but vitellogenin (Vtg) expression was induced in trout liver slices exposed to 10-4 and 10-3.7 M PLIN. Phenolphthalein (PLEIN), a metabolite of PLIN, was subsequently determined to be formed when slices were exposed to PLIN. It binds rtER with a relative binding affinity to 17ß-estradiol of 0.020%. Slices exposed to PLEIN expressed Vtg messenger RNA (mRNA) at 10-4.3 , 10-4 , and 10-3.7 M, with no detectable PLIN present. Thus, Vtg expression noted in PLIN slice exposures was explained by metabolism to PLEIN in trout liver slices. A second model chemical, 4,4'-methylenedianiline (MDA), was not shown to bind rtER but did induce Vtg mRNA production in tissue slices at 10-4.3 , 10-4 , and 10-3.7 M in amounts nearly equal to reference estradiol induction, thus indicating metabolic activation of MDA. A series of experiments were performed to identify a potential metabolite responsible for the observed increase in activity. Potential metabolites hydroxylamine-MDA, nitroso-MDA, azo-MDA, and azoxy-MDA were not observed. However, acetylated MDA was observed and tested in both ER-binding and tissue slice Vtg induction assays. Environ Toxicol Chem 2023;42:2747-2757. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Oncorhynchus mykiss , Xenobióticos , Humanos , Animales , Activación Metabólica , Xenobióticos/metabolismo , Estradiol/metabolismo , Vitelogeninas/metabolismo , Oncorhynchus mykiss/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA